

Vibrations due to vibratory sheet pile driving – new field test

Fanny Deckner

KTH Royal Institute of Technology/NCC Construction Sverige AB

Project organization – Vibrations due to pile and sheet pile driving

- Main people involved:
 - Industrial PhD-student: Fanny Deckner, NCC/KTH Royal Institute of Techonolgy
 - Main supervisor: Staffan Hintze, NCC/KTH Royal Institute of Technology
 - Supervisor: Kenneth Viking, NCC
 - A couple of Master students
- Financial support:
 - Development Fund of the Swedish Construction Industry (SBUF)
 - NCC Construction Sverige AB
 - KTH Royal Institute of Techology
- Licentiate thesis April 2013
- Working towards doctor (prospective dissertation fall 2016)

Background

- Vibrations due to pile driving is a major concern for the construction industry
 - Damage to buildings, structures and equipment
 - Disturbance for humans
- Better prediction would be very beneficial for the construction industry
 - Over-estimation = costly
 - Under-estimation = costly

Current knowledge

- Common empirical relation (originating from Attewell & Farmer (1973))
- What is needed to be studied further for better prediction?
- One answer: Pile-soil interaction during driving

New instrumentation system – overview

New instrumentation system - sensors

Soil instrumentation

Sheet pile instrumentation

Field test Solna, Stockholm May 2013

- Aim: Study sheet pile soil interaction
- Aim: Contribute to a platform for the development of a new prediction model
- Field test was assisted by Claire Guillemet (Guillemet, 2013)

Site description

- Solna, ca 7 km north of Stockholm
- Construction of a new tramway

Test set-up

- 9 ground accelerometers
- 9 sheet pile accelerometers O
- 7 measurement series

Results

- Sheet pile vibrations during series 1
- Generally higher vertical accelerations during driving
- 50-60g in all directions at the end of driving

Results

- Attenuation with distance during series 1
- 90-99 % of the vibration magnitude is dispersed within the first 0.5 m

Conclusions

- New instrumentation system exceeded expectations!
- 90-99 % of the vibration magnitude is dispersed within the first 0.5 m

The conclusions are of great value both for the construction industry in contributing to better understanding and for the future of this research project.

Thank you for listening!

Fanny Deckner

KTH Royal Institute of Technology/NCC Construction Sverige AB

fanny.deckner@ncc.se

